A start up that focuses in the mobile advertisment technology mainly in the area of cross promotion
Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem.
Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server.
RNA molecules can achieve a broad range of regulatory functions through specific structures that are in turn determined by their sequence. The prediction of mutations changing the structural properties of RNA sequences (a.k.a. deleterious mutations) is therefore useful for conducting mutagenesis experiments and synthetic biology applications. While brute force approaches can be used to analyze single-point mutations, this strategy does not scale well to multiple mutations. In this article, we present corRna a web server for predicting the multiple-point deleterious mutations in structural RNAs. corRna uses our RNAmutants framework to efficiently explore the RNA mutational landscape. It also enables users to apply search heuristics to improve the quality of the predictions. We show that corRna predictions correlate with mutagenesis experiments on the hepatitis C virus cis-acting replication element as well as match the accuracy of previous approaches on a large test-set in a much lower execution time. We illustrate these new perspectives offered by corRna by predicting five-point deleterious mutations—an insight that could not be achieved by previous methods. corRna is available at: http://corrna.cs.mcgill.ca
A light weight graphing library
A browser based game build in javascript. This game benefits from crowd source through gamers solving compare genomics puzzles by a color matching problem. In other words this game is a human compute framework for comparative geonmics.
A comic source and promotion platform [Coming Soon]